Flexible integrated photonics: where materials, mechanics and optics meet [Invited]

نویسندگان

  • Juejun Hu
  • Lan Li
  • Hongtao Lin
  • Ping Zhang
  • Weidong Zhou
  • Zhenqiang Ma
چکیده

While the vast majority of integrated photonic devices are traditionally fabricated on rigid substrates, photonic integration of both passive and active photonic devices on flexible polymer substrates has been demonstrated in recent years, and its applications in imaging, sensing and optical interconnects are being actively pursued. This paper presents an overview of the emerging field of mechanically flexible photonics, where we examine material processing and mechanical design rationales dictated by application-specific optical functionalities. The examples include semiconductor nanomembranes which serve as the key enabling material for hybrid inorganic-organic flexible active photonics, and monolithically integrated passive photonic structures fabricated from semiconductors, polymers, or amorphous materials. Technical challenges and further research opportunities related to materials engineering and device integration on flexible substrates are also discussed. ©2013 Optical Society of America OCIS codes: (160.3130) Integrated optics materials; (160.6000) Semiconductor materials; (160.2750) Glass and other amorphous materials; (130.3120) Integrated optics devices; (140.4780) Optical resonators; (040.5160) Photodetectors; (350.3850) Materials processing. References and links 1. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D 42(23), 234007 (2009). 2. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J. Yu, J. B. Geddes 3rd, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008). 3. L. Zhou, A. Wanga, S. Wu, J. Sun, S. Park, and T. Jackson, “All-organic active matrix flexible display,” Appl. Phys. Lett. 88(8), 083502 (2006). 4. E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly Reliable Flexible Active Optical Links,” IEEE Photon. Technol. Lett. 22(5), 287–289 (2010). 5. D. Guidotti, Y. Jianjun, M. Blaser, V. Grundlehner, and G. Chang, “Edge viewing photodetectors for strictly inplane lightwave circuit integration and flexible optical interconnects,” in Proceedings of 56th Electronic Components and Technology Conference (IEEE, 2006), pp. 782–788. 6. T. Shibata and A. Takahashi, “Flexible opto-electronic circuit board for in-device interconnection,” in Proc. 58th Electron. Compon. Technol. Conf. (IEEE, 2008), pp. 261–267. 7. B. Swatowski, C. Amb, S. Breed, D. Deshazer, W. Ken Weidner, R. Dangel, N. Meier, and B. Offrein, “Flexible, stable, and easily processable optical silicones for low loss polymer waveguides,” Proc. SPIE 8622, 8622–8624 (2013). 8. K. Cherenack, K. V. Os, and L. V. Pieterson, “Smart photonic textiles begin to weave their magic,” Laser Focus World 48, 63–66 (2012). 9. Z. Yu, X. Niu, Z. Liu, and Q. Pei, “Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes,” Adv. Mater. 23(34), 3989–3994 (2011). #191249 $15.00 USD Received 31 May 2013; revised 31 Jul 2013; accepted 2 Aug 2013; published 12 Aug 2013 (C) 2013 OSA 1 September 2013 | Vol. 3, No. 9 | DOI:10.1364/OME.3.001313 | OPTICAL MATERIALS EXPRESS 1313 10. J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun 2, 343 (2011). 11. J. Yoon, A. J. Baca, S. I. Park, P. Elvikis, J. B. Geddes 3rd, L. Li, R. H. Kim, J. Xiao, S. Wang, T. H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nat. Mater. 7(11), 907–915 (2008). 12. W. Park and J. Lee, “Mechanically tunable photonic crystal structure,” Appl. Phys. Lett. 85(21), 4845–4847 (2004). 13. Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci Rep 2, 622 (2012). 14. C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13(1), 248–252 (2013). 15. D. Taillaert, W. Paepegem, J. Vlekken, and R. Baets, “A thin foil optical strain gage based on silicon-oninsulator microresonators,” Proc. SPIE 6619, 661914, 661914-4 (2007). 16. L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Opt. Express 20(18), 20564–20575 (2012). 17. J. C. Martinez-Anton, H. Canabal, J. A. Quiroga, E. Bernabeu, M. A. Labajo, and V. C. Testillano, “Enhancement of surface inspection by Moiré interferometry using flexible reference gratings,” Opt. Express 8(12), 649–654 (2001). 18. L. Ge, X. Wang, H. Chen, K. Qiu, and S. Fu, “Flexible subwavelength gratings fabricated by reversal soft UV nanoimprint,” Chin. Opt. Lett. 10(9), 090502–090505 (2012). 19. D. H. Kim, N. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, “Epidermal electronics,” Science 333(6044), 838–843 (2011). 20. Z. Ma, “Materials science:An electronic second skin,” Science 333(6044), 830–831 (2011). 21. S. Ahn and L. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20(11), 2044–2049 (2008). 22. J. Ok, H. Youn, M. Kwak, K. Lee, Y. Shin, L. Guo, A. Greenwald, and Y. Liu, “Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters,” Appl. Phys. Lett. 101(22), 223102 (2012). 23. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22(9), 2168–2176 (2004). 24. Y. Huang, G. Paloczi, A. Yariv, C. Zhang, and L. Dalton, “Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography,” J. Phys. Chem. B 108(25), 8606–8613 (2004). 25. G. Paloczi, Y. Huang, and A. Yariv, “Free-standing all-polymer microring resonator optical filter,” Electron. Lett. 39(23), 1650–1651 (2003). 26. K. J. Kim, J. K. Seo, and M. C. Oh, “Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector,” Opt. Express 16(3), 1423–1430 (2008). 27. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010). 28. K. J. Kim, J. W. Kim, M. C. Oh, Y. O. Noh, and H. J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express 18(8), 8392–8399 (2010). 29. T. Lu, L. Chiu, P. Lin, and P. Lee, “One-dimensional photonic crystal nanobeam lasers on a flexible substrate,” Appl. Phys. Lett. 99(7), 071101 (2011). 30. S. Furumi, H. Fudouzi, H. Miyazaki, and Y. Sakka, “Flexible polymer colloidal -crystal lasers with a lightemitting planar defect,” Adv. Mater. 19(16), 2067–2072 (2007). 31. H. Song, M. Oh, S. Ahn, W. Steier, H. R. Fetterman, and C. Zhang, “Flexible low voltage electro-optic polymer modulators,” Appl. Phys. Lett. 82(25), 4432–4434 (2003). 32. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Twodimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005). 33. J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes,” Nature 477(7362), 45–53 (2011). 34. H. Lin, L. Li, Y. Zou, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Chalcogenide glass planar photonics: from mid-IR sensing to 3-D flexible substrate integration,” Proc. SPIE 8600, 8600–8620 (2013). 35. C. Hsueh, “Modeling of elastic deformation of multilayers due to residual stresses and external bending,” J. Appl. Phys. 91(12), 9652–9656 (2002). 36. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320(5875), 507–511 (2008). 37. Y. Maeda and Y. Hashiguchi, “Flexible film waveguides with excellent bending properties,” Proc. SPIE 6899, 68990D, 68990D-8 (2008). #191249 $15.00 USD Received 31 May 2013; revised 31 Jul 2013; accepted 2 Aug 2013; published 12 Aug 2013 (C) 2013 OSA 1 September 2013 | Vol. 3, No. 9 | DOI:10.1364/OME.3.001313 | OPTICAL MATERIALS EXPRESS 1314 38. W. Yang, H. Yang, G. Qin, Z. Ma, J. Berggren, M. Hammar, R. Soref, and W. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96(12), 121107 (2010). 39. W. Zhou, M. Zhenqiang, C. Santhad, Y. Shuai, J. Seo, D. Zhao, H. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012). 40. L. Li, H. Lin, Y. Zou, and J. Hu, Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, and S. Qiao, N. Lu, S. Danto, J. D. Musgraves, and K. Richardson are preparing a manuscript to be called “3-D integrated flexible glass photonics.” 41. D. H. Kim, N. Lu, R. Ghaffari, Y. S. Kim, S. P. Lee, L. Xu, J. Wu, R. H. Kim, J. Song, Z. Liu, J. Viventi, B. de Graff, B. Elolampi, M. Mansour, M. J. Slepian, S. Hwang, J. D. Moss, S. M. Won, Y. Huang, B. Litt, and J. A. Rogers, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy,” Nat. Mater. 10(4), 316–323 (2011). 42. R. Verplancke, F. Bossuyt, D. Cuypers, and J. Vanfleteren, “Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance,” J. Micromech. Microeng. 22(1), 015002 (2012). 43. D. Kim and J. A. Rogers, “Stretchable electronics: Materials strategies and devices,” Adv. Mater. 20(24), 4887– 4892 (2008). 44. S. Mack, M. A. Meitl, A. J. Baca, Z. T. Zhu, and J. A. Rogers, “Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers,” Appl. Phys. Lett. 88(21), 213101 (2006). 45. X. Xu, H. Subbaraman, A. Hosseini, C. Y. Lin, D. Kwong, and R. T. Chen, “Stamp printing of siliconnanomembrane-based photonic devices onto flexible substrates with a suspended configuration,” Opt. Lett. 37(6), 1020–1022 (2012). 46. M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater. 5(1), 33–38 (2006). 47. M. J. Zablocki, A. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane transfer process for intricate photonic device applications,” Opt. Lett. 36(1), 58–60 (2011). 48. A. Ghaffari, A. Hosseini, X. Xu, D. Kwong, H. Subbaraman, and R. T. Chen, “Transfer of micro and nanophotonic silicon nanomembrane waveguide devices on flexible substrates,” Opt. Express 18(19), 20086–20095 (2010). 49. D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011). 50. D. Hines, V. Ballarotto, E. Williams, Y. Shao, and S. Solin, “Transfer printing methods for the fabrication of flexible organic electronics,” J. Appl. Phys. 101(2), 024503 (2007). 51. H. C. Yuan, M. M. Roberts, P. Zhang, B. N. Park, L. J. Klein, D. E. Savage, F. S. Flack, Z. Ma, P. G. Evans, M. A. Eriksson, G. K. Celler, and M. G. Lagally, “Silicon-based nanomembrane materials: the ultimate in strain engineering,” in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, CA, 2006, pp. 327–333. 52. H. C. Yuan and Z. Ma, “Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate,” Appl. Phys. Lett. 89(21), 212105 (2006). 53. H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006). 54. H. C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007). 55. K. Zhang, J. Seo, W. Zhou, and Z. Ma, “Fast flexible electronics using transferrable silicon nanomembranes (Topical Review),” J. Phys. D. 45(14), 143001 (2012). 56. Z. Ma and L. Sun, “Will future RFIC be flexible?(Invited),” in IEEE 10th Annual Wireless and Microwave Technology Conference, 2009. WAMICON '09., Clearwater, FL, 2009, pp. 1–5. 57. L. Sun, G. Qin, G. K. Celler, W. Zhou, and Z. Ma, “12-GHz thin-film transistors with transferrable silicon nanomembranes for high-performance massive flexible electronics,” Small 6, 2553–2557 (2010). 58. H. Yang, Z. Qiang, H. Pang, Z. Ma, and W. D. Zhou, “Surface-normal fano filters based on transferred silicon nanomembranes on glass substrates,” Electron. Lett. 44(14), 858–859 (2008). 59. L. Chen, Z. Qiang, H. Yang, H. Pang, Z. Ma, and W. D. Zhou, “Polarization and angular dependent transmissions on transferred nanomembrane Fano filters,” Opt. Express 17(10), 8396–8406 (2009). 60. Z. Qiang, H. Yang, L. Chen, H. Pang, Z. Ma, and W. Zhou, “Fano filters based on transferred silicon nanomembranes on plastic substrates,” Appl. Phys. Lett. 93(6), 061106 (2008). 61. W. Yang, S. Chuwongin, D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Flexible solar cells based on stacked semiconductor nanomembranes on plastic substrates,” in CLEO San Jose, CA, 2010. 62. S. Chuwongin, W. Yang, H. Yang, W. D. Zhou, and Z. Ma, “Flexible Crystalline InP Nanomembrane LED Arrays,” in IEEE Photonics Society Annual Meeting Denver, CO, 2010. 63. H. Zhou, J.-H. Seo, D. M. Paskiewicz, Y. Zhu, G. K. Celler, P. M. Voyles, W. Zhou, M. G. Lagally, and Z. Ma, “Fast flexible electronics with strained silicon nanomembranes,” Sci Rep 3, 1291 (2013). 64. Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, K. Dobson, R. Birkmire, and J. Hu, Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, and S. Danto, J. #191249 $15.00 USD Received 31 May 2013; revised 31 Jul 2013; accepted 2 Aug 2013; published 12 Aug 2013 (C) 2013 OSA 1 September 2013 | Vol. 3, No. 9 | DOI:10.1364/OME.3.001313 | OPTICAL MATERIALS EXPRESS 1315 D. Musgraves, and K. Richardson are preparing a manuscript to be called “High-Performance, High-IndexContrast Chalcogenide Glass Photonics on Silicon and Unconventional Nonplanar Substrates.” 65. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater. 23(38), 4422–4430 (2011). 66. H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005). 67. J. E. Bowers, H. Park, A. W. Fang, O. Cohen, R. Jones, and M. Paniccia, “Design and fabrication of optically pumped hybrid silicon-AlGaInAs evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1657–1663 (2006). 68. O. G. Schmidt and K. Eberl, “Nanotechnology. Thin solid films roll up into nanotubes,” Nature 410(6825), 168 (2001). 69. S. A. Scott and M. G. Lagally, “Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys,” J. Phys. D Appl. Phys. 40(4), R75–R92 (2007). 70. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001). 71. H. Ma, A. K.-Y. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002). 72. S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibers,” Electron. Lett. 17(21), 775–777 (1981). 73. B. Rangarajan, A. Y. Kovalgin, K. Wörhoff, and J. Schmitz, “Low-temperature deposition of high-quality silicon oxynitride films for CMOS-integrated optics,” Opt. Lett. 38(6), 941–943 (2013). 74. J. T. Choy, J. D. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett. 37(4), 539–541 (2012). 75. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: Leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728– 26743 (2010). 76. J. Sandland, “Sputtered silicon oxynitride for microphotonics: a materials study,” Ph.D. thesis, Massachusetts Institute of Technology (2005). 77. J. Kim, C. Florea, K. A. Winick, and M. McCoy, “Design and fabrication of low-loss hydrogenated amorphous silicon overlay DBR for glass waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1307–1315 (2002). 78. D. P. Birnie, “Rational solvent selection strategies to combat striation formation during spin coating of thin films,” J. Mater. Res. 16(04), 1145–1154 (2001). 79. Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012). 80. Y. Zha, S. Fingerman, S. Cantrell, and C. Arnold, “Pore formation and removal in solution-processed amorphous arsenic sulfide films,” J. Non-Cryst. Solids 369, 11–16 (2013). 81. L. Schares, J. Kash, F. Doany, C. Schow, C. Schuster, D. Kuchta, P. Pepeljugoski, J. Trewhella, C. Baks, R. John, L. Shan, Y. Kwark, R. Budd, P. Chiniwalla, F. Libsch, J. Rosner, C. Tsang, C. Patel, J. Schaub, R. Dangel, F. Horst, B. Offrein, D. Kucharski, D. Guckenberger, S. Hegde, H. Nyikal, C. Lin, A. Tandon, G. Trott, M. Nystrom, D. Bour, M. Tan, and D. Dolfi, “Terabus: terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron. 12(5), 1032–1044 (2006). 82. R. Bockstaele, M. De Wilde, W. Meeus, H. Sergeant, O. Rits, J. Van Campenhout, J. De Baets, P. Van Daele, F. Dorgeuille, S. Eitel, M. Klemenc, R. Annen, J. Van Koetsem, J. Goudeau, B. Bareel, R. Fries, P. Straub, F. Marion, J. Routin, and R. Baets, “Chip-to-chip parallel optical interconnects over optical backpanels based on arrays of multimode waveguides,” Proc. Symp. IEEE/LEOS 61–64 (2004). 83. D. Butler, M. Li, S. Li, K. Matthews, V. Nazarov, A. Koklyushkin, R. McCollum, Y. Geng, and J. Luther, “Multicore optical fiber and connectors for high bandwidth density, short reach optical links,” presented at the IEEE Optical Interconnects Conference, 5–8 May 2013. 84. L. Li, Y. Zou, H. Lin, and J. Hu, Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, and X. Sun, N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney are preparing a manuscript to be called “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects.” 85. P. Horak, W. Stewart, and W. H. Loh, “Continuously tunable optical buffer with a dual silicon waveguide design,” Opt. Express 19(13), 12456–12461 (2011). 86. B. Bhola, H. Song, H. Tazawa, and W. Steier, “Polymer microresonator strain sensors,” IEEE Photon. Technol. Lett. 17(4), 867–869 (2005). 87. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Planar waveguidecoupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500– 2502 (2008). 88. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010). #191249 $15.00 USD Received 31 May 2013; revised 31 Jul 2013; accepted 2 Aug 2013; published 12 Aug 2013 (C) 2013 OSA 1 September 2013 | Vol. 3, No. 9 | DOI:10.1364/OME.3.001313 | OPTICAL MATERIALS EXPRESS 1316 89. S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, “Tunable surface plasmon resonance on an elastomeric substrate,” Opt. Express 17(10), 8542–8547 (2009). 90. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013). 91. T. Kim, R. H. Kim, and J. A. Rogers, “Microscale inorganic light-emitting diodes on flexible and stretchable substrates,” IEEE Photon. J. 4(2), 607–612 (2012). 92. T. I. Kim, Y. H. Jung, J. Song, D. Kim, Y. Li, H. S. Kim, I. S. Song, J. J. Wierer, H. A. Pao, Y. Huang, and J. A. Rogers, “High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates,” Small 8(11), 1643–1649 (2012). 93. R. H. Kim, H. Tao, T. I. Kim, Y. Zhang, S. Kim, B. Panilaitis, M. Yang, D. H. Kim, Y. H. Jung, B. H. Kim, Y. Li, Y. Huang, F. G. Omenetto, and J. A. Rogers, “Materials and designs for wirelessly powered implantable light-emitting systems,” Small 8(18), 2812–2818 (2012). 94. T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R. H. Kim, C. Lu, S. D. Lee, I. S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, cellular-scale optoelectronics with applications for wireless optogenetics,” Science 340(6129), 211–216 (2013). 95. S. W. Hwang, H. Tao, D. H. Kim, H. Cheng, J. K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y. S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, and J. A. Rogers, “A physically transient form of silicon electronics,” Science 337(6102), 1640–1644 (2012).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation and Shaping of Photon Pairs in Nonlinear Waveguide Arrays

As quantum optics grows and develops, new sophisticated optical schemes require an increasing number of optical elements. Integrated photonic circuits have the capacity to provide a solution to this challenge, as they are intrinsically scalable and interferometrically stable. Integrated realization of multi-photon entanglement, quantum factoring algorithms, and polarization entanglement has alr...

متن کامل

As-Grown InGaAs Nanolasers for Integrated Silicon Photonics

We report on-chip InGaAs nanopillar lasers directly grown on silicon using a lowtemperature, CMOS-compatible MOCVD process. A novel whispering gallery and Fabry-Perot hybrid cavity mode provides optical feedback for laser oscillation in as-grown subwavelength nanopillars. ©2010 Optical Society of America OCIS codes: (140.5960) Semiconductor lasers; (230.3120) Integrated optics devices; (130.313...

متن کامل

Numerical Analysis of Stability for Temporal Bright Solitons in a PT-Symmetric NLDC

PT-Symmetry is one of the interesting topics in quantum mechanics and optics. One of the demonstration of PT-Symmetric effects in optics is appeared in the nonlinear directional coupler (NLDC). In the paper we numerically investigate the stability of temporal bright solitons propagate in a PT-Symmetric NLDC by considering gain in bar and loss in cross. By using the analytical solutions of pertu...

متن کامل

Electro - Photonics

I introduce a new field: electro-photonics, where the best of the electronic and photonic technologies are combined to increase the capacity, flexibility and energy efficiency of communications systems. OCIS codes: (060.0060) Fiber optics and optical communications; (070.2025) Discrete optical signal processing; (130.0250) Optoelectronics; (130.3120) Integrated optics devices; (130.4110) Modula...

متن کامل

Towards Integrated Optical Coherence Tomography System on Silicon on Insulator

Optical Coherence Tomography (OCT) is an emerging optical imaging technology with ever growing number of applications. OCT enables micron scale cross-sectional imaging of subsurface microstructures by measuring the backscattered intensity of light from subsurface layers of the materials. Current OCT imaging systems are fiber or free space optics based and they can be miniaturized through integr...

متن کامل

Broadband antireflection film with moth-eye-like structure for flexible display applications

GUANJUN TAN, JIUN-HAW LEE, YI-HSIN LAN, MAO-KUO WEI, LUNG-HAN PENG, I-CHUN CHENG, AND SHIN-TSON WU* College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, USA Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan Department of Materials Science and Engineering, National Dong Hwa U...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013